
LLNL-PRES-777450
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

A Brief Review on the Development of
HYPRE for GPUs
FASTMath4 Institute - All-Hands Meeting – Argonne National Laboratory

Ruipeng LiJune 11

LLNL-PRES-777450
2/18

GPU support in HYPRE

GPU support has been available in recent releases of HYPRE
enabled by various approaches including CUDA, OpenMP 4.5, RAJA, Kokkos

Structured multigrid solvers: SMG, PFMG
Structured data types: grid, box, stencil, struct matrix and vector...
Computations are performed in BoxLoops
Completely ported to GPUs, MG setup and solve, in GPU device memory

Unstructured algebraic multigrid: BoomerAMG
Unstructured data types: ParCSR matrices, Parvectors, ...
Solve phase has been ported: MATVEC, vector operations, and appropriate
relaxations run on GPUs with unified memory
Setup phase: performed on CPUs with unified memory
Current focus: AMG setup phase on GPUs

LLNL-PRES-777450
3/18

Structured interface of HYPRE

Provides access to the structured solvers: SMG, PFMG, ...
Struct grid is composed of boxes

(-3,2)

(6,11)

(7,3)
 (15,8)

Index Space

Struct matrix and vector sit on top of struct grid
Struct computations are performed via BoxLoops

LLNL-PRES-777450
4/18

HYPRE loop abstraction for computations: BoxLoops

Example: y := αy, y is a struct vector
1 hypre_ForBoxI (i, boxes) {
2 ...
3 hypre_BoxLoop1Begin (dim , loop_size , data_box , start , unit_stride ,

yi);
4 [# pragma omp parallel for private (yi)]
5 hypre_BoxLoop1For (yi) {
6 yp[yi] *= alpha ;
7 }
8 hypre_BoxLoop1End (yi);
9 }

LLNL-PRES-777450
5/18

Different ideal memory access patterns

CPU: coarse-grained parallelism GPU: fine-grained parallelism
1 1 1111

2 2

3 3 3 3

2 2

3

1 1

322 32

1 1

3 3

22 22

33

33333

2 2 2 2 2

11111

CPU parallel BoxLoop

32

3 1

1 2

13 3

21

32132

3 1 2 3 1

2131

21 2132

2

1

2

21 133

321

2

3

3

1

2

GPU parallel BoxLoop

LLNL-PRES-777450
6/18

GPU BoxLoops have the same interface as the CPU ones

Offload the OMP parallel region to GPU: with CUDA or OpenMP 4.5
1 # define hypre_BoxLoop1Begin (ndim ,loop_size ,dbox1 ,start1 ,stride1 ,i1) {\
2 /* host code : */ \
3 hypre_BoxLoopDeclareInit (ndim , loop_size) \
4 hypre_BoxKDeclareInit (1, start1 ,dbox1 , stride1) \
5 /* device code (CUDA): */ \
6 BoxLoopforall (hypre_exec_policy ,tot , HYPRE_LAMBDA (HYPRE_Int idx) {
7 hypre_BoxLoopSet1 (i1)

1 /* device code (OMP4 .5) : */ \
2 _Pragma (omp target teams distribute parallel for) \
3 for (thread =0; thread <tot; thread ++) {\
4 hypre_BoxLoopSet1 (i1)

also available with RAJA or Kokkos

LLNL-PRES-777450
7/18

Complicated structured MG solvers can be ported seamlessly

�����
�����
�����
�����

y

x

z

1D−CR

3D−SMG 2D−SMG

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

3-D SMG semicoarsens in the z-direction
and uses xy-plane smoothing by one V-cycle
of 2-D SMG, which semicoarsens in the
y-direction and uses 1-D line smoothing in
the x-direction by Cyclic Reduction
Interpolation operator is computed by
performing a sequence of (simultaneous)
SMG solves (of one dimension lower)
SMG is recursively constructed and is
applied in the solve phase
SMG(3D)→ SMG(2D)→ CR(1D)

LLNL-PRES-777450
8/18

Performance of SMG/PFMG on GPUs

3-D Poisson problem. Problem size 2003 ×Np

Running on ray at LLNL. IBM Power8 + 4 NVIDIA Tesla P100 (Pascal) per
node. CUDA 9.2, IBM XL compilers

1 2 4 8 16 32 64

0

20

40

60

80

Num of Procs

S
M
G

se
tu
p
+

so
lv
e
ti
m
e
(s
) CPU

GPU

1 2 4 8 16 32 64

0

5

10

15

Num of Procs

P
F
M
G

se
tu
p
+

so
lv
e
ti
m
e
(s
) CPU

GPU

LLNL-PRES-777450
9/18

The solve phase of BoomerAMG has been ported to GPUs

GPU kernels for MATVEC and vector operations have been implemented with
CUDA or OpenMP 4.5

with the option of using cuSPARSE and cuBLAS
Several GPU-appropriate smoothers have been implemented

L1 Jacobi and polynomial smoothers
Setup phase is much more complicated. Currently, remains on CPUs with
CUDA unified memory

LLNL-PRES-777450
10/18

Performance of AMG on GPUs

3-D Poisson problem. Problem size 2003 ×Np

Running on ray at LLNL. IBM Power8 + 4 NVIDIA Tesla P100 (Pascal) per
node. CUDA 9.2, IBM XL compilers

np=1 np=2 np=4

10

20

30

40

50

60

14.75

29.84

50.11

13.75

29.76

56.2

C
P

U
A

M
G

se
tu

p
ti

m
e

(s
)

host memory unified memory

np=1 np=2 np=4

2

4

6

8

5.19 5.44

7.25

0.97
1.43 1.62A

M
G

so
lv
e
ti
m
e
(s
)

CPU GPU

LLNL-PRES-777450
11/18

Work in progress: AMG setup on GPUs

ä Main ingredients of classical AMG setup
Compute SoC matrix S. Relatively easy to implement
Compute coarsening C/F . PMIS algorithm has been implemented
Compute interpolation P . Direct interpolation has been implemented
Compute Galerkin product RAP . Most difficult. Two algorithms have been
implemented. Computed in pairs: Q = AP and RAP = RQ

LLNL-PRES-777450
12/18

Distributed SpGEMM in ParCSR

In parallel CSR, each process owns a slice of rows
partitioned into diag and offd parts
Decompose ParCSR A × ParCSR B into local CSR
matrix operations: multiplication, (partial) addition,
splitting, merging, and transposition for ATB

Also wrote CUDA kernels other than multiplication:
with Thrust; much simpler
(GPU) Communications are involved for
sending/receiving external rows, and can be
overlapped with computations

Communication

Boffd

AoffdAoffd Coffd

Boffd

Coffd

Bdiag

CdiagAdiag

Communication

LLNL-PRES-777450
13/18

A complete hash-table based SpGEMM algorithm

ä Compute SpGEMM in 4 steps
¶ Row NNZ estimation: to allocate “reasonable-sized” hash tables for ·;
· Symbolic analysis: to compute row counts (bounds) and row pointers ic, and

to allocate “adequate-sized” hash tables for ¸;
¸ Numeric multiplication: to compute the column indices and values in jc and c;
¹ Post-processing: to remove the gaps between rows computed from ¸.

LLNL-PRES-777450
14/18

GPU ParCSR SpGEMM: 3-D 27-pt Laplacians

ä BoomerAMG with HMIS coarsening and ext+i interpolation
ä Compute PTAP on the 1st level of AMG
ä Weak scalability study. Local problem size: 1283

ä ray: IBM Power8 + 4 NVIDIA P100. lassen: IBM Power9 + 4 NVIDIA V100
ä On ray 4 – 64 GPUs (left) and lassen 4 – 128 GPUs (right). y-axis: time

4 8 16 32 64 128

0.5

1

1.5

Num of Procs

R
A
P

ti
m
e
(s
)

CPU-OMP-5-THREAD
GPU-HYPRE

4 8 16 32 64 128

0.5

1

1.5

Num of Procs

R
A
P

ti
m
e
(s
)

CPU-OMP-5-THREAD
GPU-HYPRE

LLNL-PRES-777450
15/18

HYPRE’s memory model

Three conceptual memory locations
HYPRE_MEMORY_HOST, HYPRE_MEMORY_DEVICE, HYPRE_MEMORY_SHARED

Mapped to different physical memory in different configurations

HYPRE_MEMORY_HOST HYPRE_MEMORY_DEVICE HYPRE_MEMORY_SHARED
c1 HOST HOST HOST
c2 HOST CUDA DEVICE CUDA DEVICE
c3 HOST CUDA DEVICE CUDA MANAGED

c1: non-GPU configuration
c2: --with-cuda, --with-device-openmp
c3: c2 + --enable-unified-memory

hypre_TAlloc(HYPRE_Complex, n, HYPRE_MEMORY_DEVICE);

LLNL-PRES-777450
16/18

GPU-GPU communications through MPI

MPI_Send/Recv

GPU

CPU

H2D−Copy [omp target update(to:...)]

D2D−Copy [BoxLoop] D2D−Copy [BoxLoop]

D2H−Copy [omp target update(from:...)]

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

9

num. of procs

n
u

m
.

o
f

b
y
te

s

3−D

2−D

Memory transfer: GPU→ GPU→ CPU MPI−→ CPU→ GPU→ GPU
GPU aware MPI can help reduce GPU - CPU communication cost
Communication volume in 3-D is much higher than that in 2-D

LLNL-PRES-777450
17/18

Conclusion

The structured and unstructured algebraic multigrid solvers of HYPRE have
been enabled on GPUs by different approaches
Structured MG solvers have both the setup and solve phases on GPUs,
whereas the setup phase of AMG remains on CPUs
AMG setup on GPUs is work in progress. Major components have been
implemented
HYPRE’s abstract memory model enables execution on heterogeneous
platforms

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

THANK YOU!

Questions & Comments

li50@llnl.gov

